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The human–elephant conflict is one of the most serious conservation problems in Asia
and Africa today. The involuntary confrontation of humans and elephants claims the
lives of many animals and humans every year. A promising approach to alleviate this
conflict is the development of an acoustic early warning system. Such a system requires
the robust automated detection of elephant vocalizations under unconstrained field
conditions. Today, no system exists that fulfils these requirements. In this paper, we
present a method for the automated detection of elephant vocalizations that is robust to
the diverse noise sources present in the field. We evaluate the method on a data-set
recorded under natural field conditions to simulate a real-world scenario. The proposed
method outperformed existing approaches and robustly and accurately detected
elephants. It thus can form the basis for a future automated early warning system for
elephants. Furthermore, the method may be a useful tool for scientists in bioacoustics
for the study of wildlife recordings.

Keywords: human–elephant conflict; wildlife monitoring; Loxodonta africana;
automated elephant detection; spectral signal enhancement

Introduction

Asian (Elephas maximus) and African (Loxodonta africana and Loxodonta cyclotis)

elephants are the largest terrestrial herbivores. Today, however, elephants remain under

threat from poaching (Douglas-Hamilton 2008; Lemieux and Clarke 2009), habitat loss

and the resulting human–elephant conflict, which refer to the problem that elephants

destroy crops, damage houses and occasionally even kill people. Farmers, in return, react

by shooting, wounding and killing elephants (Hoare and Toit 1999; Santiapillai et al.

2010).

Elephants require relatively large areas and a diversity of environments to forage

(van Aarde et al. 2008; Santiapillai et al. 2010). Therefore, their ranges are complex and

not confined to officially designated protected areas. In Kenya, elephants have distinct

home sectors linked by travel corridors that typically cross unprotected areas (Douglas-

Hamilton et al. 2005). In Southern Africa, landscape fragmentation forces elephants into

clustered conservation areas across several countries (van Aarde et al. 2007), which leads

to local overpopulation and perceived adverse consequences for vegetation (Pienaar et al.

1966; Hanks 1979).

Progressive conservation approaches aim at providing corridors between core areas to

facilitate elephant’s natural movements (van Aarde et al. 2007). Such corridors require
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autonomous systems that detect elephants area-wide and continuously monitor their

migration patterns. In addition, elephants approaching human settlements need to be

detected in real-time so that actions can be made in a timely manner.

Elephants make extensive use of powerful low-frequency vocalizations commonly

termed ‘rumbles’ (Poole et al. 1988; Langbauer 2000; Soltis 2010), which travel distances

of up to several kilometres (Garstang 2004). This qualifies the elephant as a perfect model

species for acoustic observation as it is possible to detect elephants by their rumbles even

if they are out of sight (Payne et al. 2003; Seneviratne et al. 2004).

The automated analysis of animal vocalizations has recently received increasing

research attention as a method to study and monitor wild animals without interfering with

their lives or habitat (Blumstein et al. 2011). Thompson, Schwager, Payne, et al. (2009)

and Thompson, Schwager and Payne (2009) showed that the calling rate of low-frequency

elephant vocalizations is a useful index of elephant numbers, demonstrating that acoustic

surveying is a valuable tool for estimating elephant abundance, as well as for detecting

other vocal species and anthropogenic noises that may be associated with poaching

(Payne et al. 2003; Thompson, Schwager and Payne 2009; Thompson, Schwager, Payne,

et al. 2009).

Most research on acoustic (and partly automated) analysis of elephant vocalizations

addresses highly selective tasks such as the vocal identification of individual elephants

(McComb et al. 2003; Soltis et al. 2005; Clemins et al. 2006) and the analysis of particular

call types (Berg 1983; Leong et al. 2003; Stoeger-Horwath et al. 2007) and intra-call

variations (Wood et al. 2005; Stoeger et al. 2011). The automated detection of elephant

vocalizations has rarely been investigated so far.

Acoustic detection of elephants was performed by Venter and Hanekom (2010). The

authors detected elephants from their rumbles in wildlife recordings by extracting the

characteristic fundamental frequency of rumbles using a sub-band pitch estimator. They

decomposed the spectrum using 32 logarithmically scaled bandpass filters and computed

the normalized autocorrelation for each frequency channel. The peaks in the

autocorrelation function of each channel gave an indication of the fundamental frequency.

The autocorrelation functions of those channels that show significant peaks were summed.

From the location of the largest peak in the summed autocorrelation function, the

fundamental frequency was estimated. Next, pitch tracking was performed to find audio

segments where the estimate of the fundamental frequency was stable over time. Such

segments were declared to be rumbles. The approach has several shortcomings. First, pitch

detection, as pointed out by the authors, is difficult and often fails in noisy situations.

Second, engine sounds of cars and airplanes exhibit harmonic characteristics similar to

those of rumbles and thus are confused easily by the detector. Third, the detector is not

able to learn a robust model (classifier) of rumbles from the data directly. Instead, the

detector requires the tuning and specification of numerous thresholds (one for fundamental

frequency estimation and four for pitch tracking). As a result, the method is not expected

to generalize well to novel (previously unseen) data. In addition, the data used in the

experiments were recorded exclusively early during the day (in the morning) which adds

an additional bias to the detector and the evaluation.

Wijayakulasooriya (2011) proposed a detector which exploits the shape of formant

frequency tracks of rumbles to detect elephants. The author extracts formant frequencies

from the transfer function of the all-pole filter given by linear predictive coding. The basic

assumption of the approach is that the first and second formants are nearly stationary

during a rumble. The author applied the standard deviation of the first and second formant

as features to detect rumbles. A hidden Markov model (HMM) was then trained on these

14 M. Zeppelzauer et al.
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features to automatically detect rumbles. The limitations of the approach are twofold.

First, the assumption that the formants are stationary during a rumble does not hold in

practice which could be shown in experiments with our data (Zeppelzauer et al. 2013).

Rumbles exhibit partly strong temporal modulations (frequency changes) which are

clearly reflected in the formant frequency tracks. Second, the data-set on which the

detector has been evaluated contains only a few minutes of recordings and is thus not

representative for a real-world scenario. As a result, the reported performance has limited

expressiveness.

Existing approaches for acoustic elephant detection strongly rely on highly specific

sound attributes (fundamental frequency and formants) that are difficult to estimate in

noisy wildlife recordings. This requirement limits the applicability of these approaches in

a real-world scenario. Therefore, although research is in progress, no system exists that

fulfils the requirements for the reliable automated detection of elephant vocalizations

under natural field conditions.

In this work, we present a robust method for automated detection of elephant rumbles.

The proposed method does not require the detection of specific sound attributes and trains

a detector for rumbles directly from a small number of sound samples. This first makes

parameter tuning obsolete and second allows the method to adapt autonomously to the

present environment. The detector uses a novel method for signal enhancement to improve

the signal-to-noise ratio in the wildlife recordings (Zeppelzauer et al. 2013). Signal

enhancement emphasizes spectro-temporal structures of rumbles and attenuates noise

sources from the environment such as wind and rain. We evaluate the detector on a large

set of wildlife recordings of African elephants captured within a natural habitat in

South Africa. The evaluation shows that sound enhancement strongly improves the signal-

to-noise ratio of the recordings and facilitates the robust detection of rumbles. The

proposed detector yields high performance on unconstrained wildlife material and

represents the first important step towards an automated detection system for elephant

presence. In addition to this, the detector may serve as a tool for the semi-automatic

annotation and support the study of wildlife recordings by domain experts.

Methods

Study population and data acquisition

Acoustic recordings were collected from three female and two male African elephants

(L. africana) aged between 9 and 17 years located at Adventures with Elephants, Bela

Bela, South Africa. The elephants were fully habituated to human presence and free to

roam around in a savannah reserve of 300 ha. This enabled us to capture data under well-

controlled recording settings within the natural habitat of African elephants.

Stereo recordings were conducted on a 722 Sound Devices HDD recorder at 44.1 kHz,

(Sound Devices, LLC, Reedsburg, WI, USA) a directional AKG C480 B CK 69-ULS

microphone (frequency response 8Hz to 20 kHz ^ 0.9 dB) (AKG Acoustics GmbH,

Vienna, Austria) and a customized omni-directional Neumann microphone (optimized for

low-frequency recordings from 5Hz onwards) (Georg Neumann GmbH, Berlin,

Germany). The signal captured by the Neumann microphone is well-suited as input to

the developed elephant detector because it enables the detection of elephant calls coming

from all directions.

Vocalizations were recorded during two social contexts: spatial separation and

subsequent bondings. Recording distances between the elephant and the microphone

ranged from 10 to several hundreds of metres. For a detailed description of the recording

Bioacoustics 15
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context, see Stoeger et al. (2012). In a total amount of 359min (,6 h) of recordings, we

annotated 635 rumbles by manually tagging the beginning and the end of each rumble.

Rumbles were found by visual inspection of the spectrograms. The annotations further

include information about the individual, its gender and age, the quality of the recording

and whether noise was evident within the annotated call.

The rumble is a harmonic sound with a fundamental frequency in the range of about

15–35Hz and a strongly varying duration (from 0.5 s to more than 10 s in our data).

Depending on the distance of the caller, rumbles exhibit a varying number of harmonics

(McComb et al. 2003). The spectrogram of a series of four rumbles with high signal-to-

noise ratio is shown in Figure 1. The fundamental frequency at approximately 20Hz and

numerous higher harmonics are clearly recognizable. The figure further shows that the

second harmonic is significantly stronger than the fundamental frequency which makes the

fundamental frequency a weak indicator for the detection of rumbles compared to its

higher harmonics.

From the captured wildlife recordings, we observe that many noise sources corrupt the

frequency band where rumbles reside. As a result, the fundamental frequency and the

harmonic structure are masked to a high degree. The most interfering noise sources are

wind and rain, as well as engine sounds of cars and airplanes (see Figure 2). Figure 2(a)

shows rumbles in the presence of narrow-band noise introduced by a car engine. The engine

sound has a fundamental frequency at 30Hz, which is particularly misleading for detectors

that rely on pitch detection (Venter and Hanekom 2010). Figure 2(b) shows a rumble

superimposed by broadband noise where the harmonic structure is hardly visible. The

harmonic structure for short rumbles (Figure 2(a) and (c)) is less salient than that for

rumbles with a longer duration. Sound of higher frequency is limited in range by

atmospheric attenuation (Garstang et al. 1995). As a consequence the number of harmonics

decreases with the distance of the caller to the microphone. Figure 2(d) shows a far-distant

rumble (.100m) where the higher harmonics are missing. The missing of higher

harmonics impedes the detection of rumbles as reported by Venter and Hanekom (2010).

Robust detection of rumbles

We propose a robust method for the detection of elephant rumbles that first emphasizes the

harmonic structure of rumbles and then extracts the spectral envelope, to obtain a compact

8.0 24.0 40.0 56.0 72.0 88.0
0

50

100

150

200

250

s

H
z

Figure 1. A series of four ‘clean’ elephant rumbles with high signal-to-noise ratio. Only the higher
harmonics of the fourth rumble are slightly masked by noise.
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and robust spectral representation for the detection of rumbles. Figure 3 provides an

overview of the entire approach.

The harmonics together with the fundamental frequency appear as horizontally

running frequency tracks (contours) in the spectrogram (see Figure 1). The basic idea

behind our approach is to enhance (emphasize) these contours prior to feature extraction to

better separate them from noise and thus to facilitate the automated detection of rumbles.

Next, we extract robust features that represent the coarse spectral envelope of short audio

frames. The short-term features are temporally aggregated and input to a classifier. The

classifier is trained on a small training set that contains rumbles as well as background

(ambient) sound. Ultimately, the learned classifier is applied to the captured wildlife

recordings to automatically detect rumbles.

Signal enhancement

The first processing step is the enhancement of the input signals. We emphasize the

contours by applying a two-dimensional (spectro-temporal) structure enhancement on the

spectrogram (Zeppelzauer et al. 2013). For this purpose, we consider the spectrogram as an

image and compute a two-dimensional structure tensor across time and frequency.
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Figure 2. Rumbles in the presence of different noise sources, at different distances to the
microphone, and with different durations. (a) A series of short rumbles (1–1.5 s duration) and a
concurrent engine sound with a fundamental frequency around 30Hz and a second harmonic at
60Hz. (b) A rumble of approximately 2.5 s which is heavily masked by broadband noise. (c) Short
rumbles with low signal-to-noise ratio, especially in the channel between 50 and 100Hz. (d) Far
distant rumbles where most of the harmonics are missing.
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The structure tensor (Fernández et al. 2009) is constructed from the gradients

(partial derivates) of the spectrogram along time and frequency. At each position (t, f)

in the spectrogram S, where t is the time and f is the frequency, the tensor T(t, f) is

defined as

Tðt; f Þ ¼
72
t 7tf

7tf 72
f

0
@

1
A; ð1Þ

Signal enhancement

Input signal

Framing

FFT

Spectrogram

Enhanced spectrogram

Gradients

Smoothing

Tensor

Eigenvalues

Coherence

Weighting
Greenwood filterbank

Logarithmize

DCT

{   ,   ,   }

Cepstral vectors

Aggregation

Aggregated vectors

SVM

Labels (detections)

{   ,   }

Training set

Training

Signal enhancement

positive
samples

negative
samples

Figure 3. The entire workflow of the proposed method. First, the input signal is framed and a
spectrogram is computed by applying FFT on each frame. Next, signal enhancement is performed on
the spectrogram. The enhanced spectrogram is filtered with a Greenwood filter bank, logarithmized
and mapped to the cepstral domain by DCT. Finally, the cepstral feature vectors are temporally
aggregated and input to a trained classifier (SVM). The SVM outputs labels (‘rumble’/
‘background’) for each aggregated vector.
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where 7t and 7f are the partial derivates along time and frequency, respectively, and 7tf is

the product of 7t and 7f . The tensor characterizes the structure of the intensity distribution

in its local neighbourhood. Prior to the computation of the tensor, the gradients are

smoothed along the time and frequency axes by a two-dimensional Gaussian filter. This

makes the tensor more robust and representative for a larger neighbourhood. From the

tensor, we extract the eigenvalues l1 and l2 by

l1;2 ¼ 1

2
72
t þ 72

f

� �
^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72
t 2 72

f

� �2þ472
tf

r !
: ð2Þ

The eigenvalues characterize the local gradient structure in the neighbourhood of

position (t, f) and can be interpreted as follows. If there is an edge-like structure (e.g.

a frequency contour) in the neighbourhood, the condition l1 . l2 is fulfilled. For a perfect
edge (a sharp contour), l2 becomes 0 while l1 . l2 is still fulfilled. If l1 equals l2, the
underlying structure is rotationally symmetric (e.g. an isolated spectral peak). If both

eigenvalues become zero, the underlying structure is homogeneous (e.g. broadband noise).

From the eigenvalues, we compute the coherence c which is a combined measure that

provides the amount and type of structure at a given position:

c ¼ l1 2 l2
l1 þ l2

: ð3Þ

The higher the coherence at position (t, f), the stronger the edge-like structures

observed in the neighbourhood of (t, f). Thus, coherence is a well-suited indicator for

spectro-temporal structures, such as frequency contours. To enhance frequency contours

(and at the same time to attenuate noise), we apply the coherence as a weighting function

to the spectrogram. The enhanced spectrogram Ŝðt; f Þ is computed as Ŝðt; f Þ ¼ Sðt; f Þ·
ðcðt; f Þ þ 1Þ. Figure 4 illustrates the effect of the spectral weighting. The coherence in

Figure 4(b) for the input spectrogram in Figure 4(a) gives strong weights to the frequency

contours produced by the rumble at 35 s and lower weights to nearly homogeneous and

isotropic structures originating from noise. The coherence for the broadband noise, for

example, at 4 s (label ‘A’) becomes nearly zero. Consequently, the broadband noise is

attenuated in the enhanced spectrogram in Figure 4(c). Other noise sources, such as the

low-frequency spike at 30 s (label ‘B’), are attenuated as well.

Acoustic feature extraction

After spectral enhancement, we extract acoustic features from the spectrogram as a basis

for the automated detector. Related approaches on the detection of elephant rumbles rely on

highly specific acoustic attributes, such as pitch and formants, which are difficult to extract

automatically (Venter and Hanekom 2010; Wijayakulasooriya 2011). Instead of trying to

detect such specific acoustic attributes, we compute robust features that compactly

represent the spectral energy distribution of short audio frames. This representation can be

computed independently of the amount of noise present.

Each audio frame is 300ms wide and subsequent frames have an overlap of 90%. The

spectral range is limited to the frequency band of 0–500Hz where rumbles mostly reside.

First, we apply a Greenwood-scaled filterbank to the spectrogram. The Greenwood scale

models the logarithmic spacing of the critical bands ofmammals (Greenwood 1961). For an

adequate modelling, the Greenwood scale requires the specification of the hearing range of
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the investigated species and a parameter k which is set to 0.88 for mammals according

to LePage (2003). Similarly to Clemins et al. (2006), we set the hearing range as

10–10,000Hz and apply a Greenwood-scaled filterbank of 30 bands. After the application

of the filter bank, the filter energies are logarithmically scaled and a discrete Cosine

transform (DCT) is applied to the logarithmized filter energies to obtain cepstral

coefficients. We select the first 18 cepstral coefficients as features to represent the coarse

spectral envelope of each 300ms audio frame.

For automated detection,we temporally aggregate the cepstral coefficients of successive

audio frames by taking their mean and variance. The result is a more robust and long-time

numeric representation (aggregated feature vectors) that can be used directly as input to the

automated detector.

Detector training and classification

For the detection of elephant rumbles, we train a classifier on the aggregated feature

vectors. For this purpose, we split the available set of wildlife recordings into a training set

and disjoint test set. The training set contains rumbles (the positive class) as well as

background sounds (the negative class). The number of background sounds is significantly

larger than the number of rumbles, to account for real-world conditions.
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Figure 4. The effect of sound enhancement. (a) The input spectrogram with a rumble at 35 s and
several noise sources, e.g. broadband noise (label ‘A’ and label ‘B’). (b) The coherence obtained for
each location in the spectrogram. The highest values are obtained in the area of the rumble. (c) The
enhanced spectrogram after weighting with the coherence. The signal-to-noise ratio of the rumble is
clearly improved and the noise sources are attenuated.
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As a detector for elephant vocalizations, we use a support vector machine (SVM)

classifier. The SVM is a non-probabilistic discriminative classifier introduced by Vapnik

and Lerner (1963), Cortes and Vapnik (1995) and Vapnik (1995). We have chosen the

SVM as detector for the following reasons: (i) the application of an already trained SVM

on novel (unseen) data is computationally efficient. In the context of an automatic

detection system, runtime is an important factor as the continuously captured audio data

have to be processed in real time. (ii) SVMs can generate robust models even from few

training data. The number of parameters required by an SVM is independent of the size of

the training set. This prevents overfitting and improves the generalization ability of the

classifier. (iii) In the context of automated elephant detection, the number of positive

examples in the training set is significantly lower than the number of negative examples.

SVMs can cope well with such asymmetric class cardinalities by the use of asymmetric

loss functions.

The idea of SVMs is to find a function in feature space with a preferably low number of

parameters (e.g. a linear or quadratic function) that separates the classes represented by the

training samples as best as possible. For the training of an SVM, we are given n training

samples X ¼ ðx1; . . . ; xnÞ in Rd. The vector of corresponding class labels y ¼ ðy1; . . . ; ynÞ
contains values yi [ f21;þ1} corresponding to the two classes v1 and v2. The objective

of SVM training is to find a function gðxÞ such that

sign ðgðxiÞÞ ¼ 2 1 if xi [ v1 and ð4Þ

sign ðgðxiÞÞ ¼ þ 1 if xi [ v2: ð5Þ
The function gðxÞ is called the discriminant function. In the case of SVMs, gðxÞ is

linear and represents a hyperplane in Rd: gðxÞ ¼ w·xþ b, where w (weight vector) is the

d-dimensional normal vector of the hyperplane and b (bias) is the translation of the

hyperplane along w. For b ¼ 0, the hyperplane goes through the origin. The dot operator

‘·’denotes the inner product of two vectors.

Two classes v1 and v2 are linearly separable if there exists a weight vector w and a

bias b such that sign ðw·xi þ bÞ ¼ yi for all samples xi in X, i.e. all samples can be correctly

classified. Figure 5 gives examples for linearly separable and non-separable classes in two-

g(x) g(x)

x1 x1

x2 x2

(a) (b)

Figure 5. Linear separability of classes: (a) the classes are not linearly separable. There is no linear
function that is able to separate the two classes without errors, and (b) the classes are linearly
separable.
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dimensional feature space. If the training samples of the two classes are linearly separable,

then the SVM constructs an optimal separating hyperplane w·xþ b ¼ 0 between both

classes that maximizes the distance between the hyperplane and the nearest data points of

each class. The data points that determine the hyperplane are the support vectors. The

distance between the support vectors and the hyperplane is called the margin. Figure 6

depicts the difference between a suboptimal and an optimal separating hyperplane. For an

optimal separating hyperplane, the margin to both sides is maximized. The larger the

margin the higher is the robustness of the classifier.

From Figure 6, we observe that the separating hyperplane is defined only by a few

support vectors, which all have the same distance to the hyperplane. Not all training

samples contribute to the hyperplane. Instead, the SVM emphasizes only those samples

that are most difficult to separate (the support vectors) and which in turn are the most

important samples for the classification task (Duda et al. 2001). Due to the low number of

support vectors, the generalization ability and the robustness of SVMs tend to be high

(Cortes and Vapnik 1995).

According to Cortes and Vapnik (1995), the optimal hyperplane that maximizes the

margin can be computed by estimating the saddle point of the following Lagrange

functional:

Lðw; b;aÞ ¼ 1

2
w·w2

Xn
i¼1

ai½yiðw·xþ bÞ2 1�; ð6Þ

where ai with 1 # i # n are the Lagrange multipliers. The optimal parameters for the

hyperplane are obtained by finding the saddle point where w and b are minimized and a is

maximized. The functional can be reformulated into a maximization problem in a (see

Fletcher (2009) for details):

LðaÞ ¼
Xn
i¼1

ai 2
1

2

Xn
i;j

aiajyiyjxi·xj; ð7Þ

g(x) g(x)

margin
margin

margin
margin

x2 x2

x1 x1

(a) (b)

Figure 6. Optimal separating hyperplanes: (a) the margin of the hyperplane g(x) is not optimal and
(b) a hyperplane with maximized margin. The support vectors are encircled.
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subject to the conditions:

ai $ 0;
Xn
i¼1

aiyi ¼ 0; 1 # i # n: ð8Þ

This representation is the dual form of Equation (6). It is noteworthy that Equation (7) only

requires the computation of inner products between feature vectors xi and xj. This is

an important property for the integration of kernels to enable nonlinear discriminant

functions.

In practice, two classes are often not linearly separable. For this reason, Cortes and

Vapnik introduced slack variables which represent penalties for samples that cannot be

correctly classified by the linear discriminant function (Cortes and Vapnik 1995). For each

sample, a slack variable zi is introduced with zi ¼ 0 for correctly classified samples and

zi . 0 for misclassified samples. During optimization, the sum of all slack variablesPn
i¼1zi is minimized. The separating hyperplane is constructed in such a manner that an

optimal trade-off is found between a maximum margin and a minimum number of

misclassified samples.

For some data-sets, linear separation is generally suboptimal; see, for example, the

data-set in Figure 7. For such data-sets, nonlinear classification is more suitable. However,

the complexity of estimating nonlinear discriminant functions is higher than that of linear

functions. Fortunately, SVMs allow the integration of nonlinear discriminant functions in

an efficient way. Instead of estimating a nonlinear discrimination function in feature space,

the feature vectors are mapped nonlinearly from the original feature space Rd into a higher

dimensional space, the target space Rd0 , by a function f : Rd ! Rd0 with d , d0. In the

higher dimensional target space, the feature points move apart from each other which

facilitates linear separability. Given an adequate mapping f, the data-set becomes

separable by a linear discrimination function gðfðxÞÞ in the target space. This linear

function in the target space is in turn a nonlinear discrimination function in the original

feature space. Figure 7 illustrates the effect of a nonlinear transformation that maps the

feature space into a higher-dimensional target space where the samples of the two classes

become linearly separable.

The transform f and the computations in the high-dimensional target space are

complex and can be avoided by the kernel trick (Aizerman et al. 1964). Instead of

x1 z1

z2

g(φ(x))

(b)(a)

Figure 7. A nonlinear mapping from R1 to R2: (a) the samples in the original feature space are not
linearly separable. In the higher dimensional space, (b) the samples become linearly separable.
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transforming the feature vectors and comparing the feature vectors in the target space, an

appropriate nonlinear comparison function (the kernel) can be applied in the original

space. From Equation (7), we observe that the samples (feature vectors) contribute to the

optimization problem only in terms of inner products. The inner product xi·xj in Equation

(7) can be replaced by a kernel function K with Kðxi; xjÞ ¼ fðxiÞ·fðxjÞ that represents an
inner product in the target space obtained by the mapping function f.

By the use of kernels, the computation of the mapping f and the computations in the

target space become implicit and can thus be avoided. This property makes nonlinear

classification with SVMs efficient. Any continuous symmetric semi-positive definite

function (Mercer’s theorem) is a valid kernel function (Mercer 1909). This means that

each function that represents an inner product in the target space is a valid kernel (Cortes

and Vapnik 1995). The simplest kernel is the linear kernel: Kðxi; xjÞ ¼ xi·xj. In this work,

we use a nonlinear Gaussian radial basis function kernel to account for the complexity of

the training data: Kðxi; xjÞ ¼ e2kxi2xjk2=2s 2

.

Once the SVM has been trained on the training data, we can use it as a detector for

elephant vocalizations on the test data. First, for a given recording, we apply signal

enhancement, feature extraction and temporal aggregation (as described above) for

successive audio frames. Next, the trained SVM is applied on the temporally aggregated

features and assigns each audio frame either to the class of rumbles (v1) or to the class of

background sounds (v2). Figure 3 gives an overview of the complete algorithm.

Evaluation and results

The training set in our experiments contains 63 randomly chosen rumbles from the

recordings (10% of all rumbles in the data-set). Thirty randomly chosen sound segments

that contain only background sound are used as a negative training set. The remaining data

(93% of all recordings) are used for testing the detector.

For performance evaluation, we compare the proposed approach with two alternative

approaches. The first approach is a method for sound detection recently introduced by

Hao et al. (2012). The approach autonomously extracts a representative and discriminative

template for rumbles from the training data and detects rumbles in the test set by template

matching using the CK distance measure (Campana and Keogh 2010). The second

alternative approach uses the same cepstral features (Clemins et al. 2006) as the proposed

approach but without applying signal enhancement. All methods are evaluated on the same

training and test data.

The results for all three evaluated methods are summarized in Table 1. The approach

by Hao et al. (2012) autonomously selects a representative template for rumbles from the

training data, which shows that template selection works satisfactorily. Detection is

performed by sliding the selected template over the test data and performing template

Table 1. Overall detection results of the proposed method and two compared methods in terms of
detection rate and false-positive rate.

Method Detection rate (%) False-positive rate (%)

Hao et al. (2012) 78.6 78.6
Clemins et al. (2006) 88.2 24.4
Proposed approach 88.2 13.7
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matching. The method yields a detection rate of 78.6% and a false-positive rate of 78.2%.

The second evaluated approach, using cepstral features but without signal enhancement,

outperforms Hao et al. (2012) in both detection rate (88.2%) and false positive rate

(24.4%). The proposed approach using signal enhancement yields a detection rate of

88.2% and a false-positive rate of 13.7%. The proposed approach reduces the false-

positive rate by 10.7% by means of signal enhancement.

Discussion

From the results, we observe that template matching often fails in noisy situations. As the

template is not able to model the different noise sources, template matching yields low

similarities when noise corrupts a rumble. A single template is a too simple model for the

detection of elephant rumbles in wildlife recordings. Furthermore, rumbles have highly

varying duration and fundamental frequency. Template matching is not able to take such

intra-call variations into account.

The second approach clearly outperforms template matching. The high detection rate

of 88.2% shows that the cepstral features and the model generated by the SVM are well

suited for the given task. However, due to noise, many false-positive detections are still

generated (24.4%). As a result, nearly every fourth detection is a false detection.

The proposed approach with spectro-temporal signal enhancement yields a similar

detection rate as the detector without signal enhancement. However, the false-positive rate

almost halves to only 13.7%. Signal enhancement strongly improves the signal-to-noise

ratio in the recordings by emphasizing rumble-like structures and at the same time by

attenuating narrow- and broadband noise sources. The comparison with the second

evaluated approach shows that signal enhancement enables the cepstral features to better

model the spectral characteristics of rumbles which ultimately results in a more accurate

detection.

We further investigate the false detections generated by the detector. We observe that

false detections were introduced by engine sounds of airplanes and cars which have partly

similar fundamental frequencies and harmonic structure to rumbles. Figure 8 shows

spectrograms of different false detections that originate from engine noises. Figure 8(a)

shows the spectral distribution of the engine sound of an airplane. The fundamental

frequency and the higher harmonics resemble those of rumbles. Figure 8(b)–(d) shows

engine sounds of cars. Again the fundamental frequency is in the range of 30–50Hz

and thus can easily be confused with that of elephant rumbles. The engine sound in

Figure 8(d) even resembles the typical temporal modulation of rumbles (a slight increase

of frequency in the middle of the call). From our experiments, we conclude that engine

sounds cannot be separated reliably from elephant rumbles by an acoustic short-time

analysis. The most significant difference between rumbles and engine sounds is their

duration. While most rumbles have durations between 0.5 s and 10 s, engine sounds have a

much larger duration. Thus, the distinction of rumbles from engine sounds requires a

longer-time analysis. A combination of our detector with a long-time acoustic analysis is

one direction of research that will be followed in future to further improve the detector’s

performance.

Further inspection of false positives reveals that our method is able to discover rumbles

that were for some reason not annotated, for example, because they were combined or

partly masked by other calls. Figure 9 shows spectrograms of such rumbles. The black

vertical line marks the exact position of the detection. In Figure 9(a), a rumble is detected
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correctly, which directly follows a roar vocalization. Similarly, in Figure 9(b), a roar

transitions into a rumble. Both rumbles were not included in the annotation. Figure 9(c)

shows the detection of a non-annotated rumble which is superimposed by snorts and

trumpets of other elephants. Finally, Figure 9(d) shows a rumble that has been overlooked

during annotation. However, the rumble could be discovered by our detector.

These results show that the proposed detector is not only a first step towards an

automatic elephant monitoring and early warning system but further a helpful tool for

experts in the annotation of large amounts of monitoring data. The detector supports the

annotation process in a semi-automatic way. In semi-automatic annotation, the automated

detector provides the annotator locations of special interest in the recorded data where the

search for sound occurs with high probability. This is of great value, especially because

our experiments show that the detector has the potential to discover rumbles which are

difficult to find manually. In addition, semi-automatic annotation accelerates the tedious

process of annotation significantly.

There is currently no public benchmark data-set for the evaluation of elephant

detectors. However, we can compare the results of the proposed approach with those of

related approaches, such as that of Venter and Hanekom (2010). The authors obtain a

detection rate of 85.7% and a false-positive rate of 14.2% on a data-set comprising 4 h
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Figure 8. False detections due to engine sounds of cars and airplanes. The detection occurs exactly
in the middle of each spectrogram (black vertical line). (a) An airplane, (b) a car engine, (c) a mixture
of car engine sounds and (d) a car engine with a similar temporal modulation as frequently exhibited
by rumbles.
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with, however, only 28 rumbles in total. Our data-set comprises 6 h, contains 635

rumbles and outperforms the method of Venter and Hanekom (2010) in detection rate

as well as false-positive rate. An objective comparison with the results of

Wijayakulasooriya (2011) is not appropriate, as the author uses a data-set of only a

few minutes for evaluation.

To the best of our knowledge, the data-set used in this work is the most comprehensive

data-set for automated elephant detection so far. In order to establish a common

benchmark data-set, we make the used data-set publicly available to researchers also

working on elephant detection. This will enable objective comparisons between different

approaches and foster research in this field in future.

In summary, it can be stated that the proposed method for elephant detection is a

further step towards an autonomous early warning system for elephant presence, which is

crucial to alleviate human–elephant conflicts. Our experiments demonstrate that signal

enhancement is essential for the detection of elephant calls in noisy wildlife recordings

and that local spectro-temporal structure analysis is well suited for this purpose. Future

work will comprise the explicit integration of further call types into the detector to enable a

more comprehensive detection of elephant presence. Furthermore, additional short- and

long-time features are currently being investigated to further improve the robustness of the

detector.
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Figure 9. Detections of rumbles that were not discovered during annotation. (a) A rumble that
follows a roar vocalization, (b) a roar that transitions into a rumble, (c) a rumble superimposed by
snorts and trumpets of other elephants and (d) an isolated rumble recovered by our method.
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