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Summary

1. We present a new animal space-use model (elliptical time density –ETD) that uses discrete-time tracking data

collected in wildlife movement studies. The ETDmodel provides a trajectory-based, nonparametric approach to

estimate the utilization distribution (UD) of an animal, using model parameters derived directly from the move-

ment behaviour of the species. The model builds on the theory of ‘time-geography’ whereby elliptical constrain-

ing regions are established between temporally adjacent recorded locations.

2. Using a Weibull speed distribution fitted for an animal’s movement data, a time density value (i.e. time per

unit landscape) is determined from the expectation of all elliptical regions equal to, or greater than, theminimum

bounding ellipse for a given landscape point. We tested the ETD model using a tracking dataset for an African

elephant (Loxodonta africana) and compared the resulting UDs for regularly sampled, frequently recorded loca-

tions, as well as irregular random time intervals between locations and also infrequent temporal-sampling

regimes, providing insight to the method’s performance with different resolution data. We compared the perfor-

mance of the ETDmodel, the Brownian bridge movement model (BBMM), the time-geography density estima-

tor (TGDE) and the Kernel Density Estimator (KDE) by calculating omission/commission errors from the

predicted space-use distribution of each model relative to the true known UD of our elephant test data. The

comparisonwasmade for the 10–99%percentile UDmodel areas.

3. The ETD90model (i.e. ETDmodel parameterized using the 90% percentile value of theWeibull speed distri-

bution) resulted in the fewest errors of commission and omission with regard to locating the true movement path

at the 99%percentile UD area.

4. The ETD model provides an improved approach for estimating animal UDs since (i) parameters are derived

directly from the tracking data rather than assumed; (ii) parameter values are biologically interpretable; (iii) the

Weibull speed distribution is adaptable to various temporal-sampling regimes; and (iv) the ETD model handles

the case of degenerate ellipses thus preserving landscape connectivity in theUD. Software (freeware) for calculat-

ing the ETD and a Bayesian framework for estimating theWeibull distribution speed parameters are also intro-

duced in the paper.

Key-words: animal movement, GIS, GPS tracking, home range, utilization distribution

Introduction

Quantifying the movements of an animal and its use of a land-

scape and the resources available therein is a fundamental

component of wildlife ecology and conservation. Tracking ani-

mals with technology such as global positioning system (GPS)

tracking devices is a widely usedmethodology that can provide

detailed positional information (Hebblewhite &Haydon 2010;

Kie et al. 2010). Although the technology for continuous-time

monitoring of animals is fast approaching [e.g. using triaxial

accelerometers (Wilson et al. 2006)], GPS and similar reloca-

tion technology [e.g. Argos or very high-frequency (VHF) col-

lar-based information] only sample at discrete and relatively

infrequent times. Models are therefore needed to predict an

animal’s spatial utilization when not being directly sampled

and are generally referred to as animal ‘home range’ models

(Laver &Kelly 2008; Fieberg&B€orger 2012).

Home range models have started to emerge that explicitly

incorporate the temporality of sampled positions into the

model definition, thereby leveraging the inherent movement

structure of the sample to derive a more accurate statistical

and biological estimate; for example, Brownian bridge move-

ment model (BBMM) Horne et al. 2007, time-geographic*Correspondence author. E-mail: walljcg@gmail.com
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density estimation (TGDE) (Downs 2010; Downs, Horner &

Tucker 2011), dynamic BBMM(dBBMM) (Kranstauber et al.

2012), potential path area (PPA) (Miller 2005; Long & Nelson

2012), time localized convex hull (T-LoCoH) (Lyons, Turner

&Getz 2013). As such, these home rangemodels are better sui-

ted to handle the temporally and spatially autocorrelated nat-

ure of high-resolution data sets (Lyons, Turner &Getz 2013).

The BBMM and dBBMM models both estimate landscape

utilization based on mechanistic assumptions (i.e. Brownian

motion) of the underlying movement behaviour between sam-

pled positions. In contrast, the theory of ‘time-geography’

(H€agerstrand 1970; Miller 2005) uses elliptical areas to demar-

cate the bounding region that a moving object could have

occupied between recorded positions, but does not make

assumptions about the form of movement the object took

between points (Long & Nelson 2012). Downs, Horner &

Tucker (2011) have recently expanded the time-geographic

approach to formulate a UDmodel from geo-ellipses connect-

ing recorded animal locations. Models that produce a utiliza-

tion distribution (i.e. a spatial model that gives a probability of

occupancy, or time spent, for every point in the landscape

(Jennrich & Turner 1969; Van Winkle 1975; Worton 1989;

Seaman & Powell 1996; Marzluff, Knick & Millspaugh 2001;

Fieberg & Kochanny 2005; Keating & Cherry 2009) contain

more spatial structure and information compared with models

that outline potential areas of use [e.g. minimum convex poly-

gons (MCP) and PPA] and therefore are generally preferred in

analysis of animal space use (Fieberg & Kochanny 2005;

Fieberg&B€orger 2012).

In this paper, we advance time-geographic approaches for

space-use estimation by developing a novel approach that

quantifies the probable time-density of occupancy within geo-

ellipses bounding the potential space use of an individual.

Deriving a UD based on the probability of time spent at a

given point in the landscape provides a logical advancement of

the TGDE model in line with typical space-use constructs in

the wildlife ecology field. Secondly, we present a robust Bayes-

ian framework for modelling the maximum speed parameter

critical as input to time-geographic approaches, which pro-

vides a construct for interpreting this user-selected parametri-

zation of the model. Thirdly, we exemplify application of the

model using data collected from an Africana elephant

(Loxodonta africana), specifically exploring the effects of differ-

ential temporal sampling regimes and model parameter inputs

on model output. From this example, we demonstrate how

model parametrization can be conducted in a biologically

interpretable manner. Finally, we compare the omission and

commission error rates between an absolute movement path

(generated) and UD estimates of the ETD model, BBMM,

TGDE and the traditional kernel density estimator (KDE),

providing a platform by which to contrast our model with

commonly used approaches.

Elliptical Time-Densitymodel development

Similar to other time-geographic approaches, we begin devel-

opment of the ETDmovement model by considering a pair of

sequentially acquired positions from a tracked animal (see Fig.

1). We assume the animal was at position p~i at time ti and then

at position p~j at time tjwhereTj = tj�ti and j = i + 1. Together

i and j index a chronologically sorted list of recorded locations.

We assume no knowledge of where the animal travelled in

between the recorded locations and that it could have taken

any complicated, but unknown, route with a path length equal

to rj and an average speed of sj ¼ rj
Tj
. The speed sj puts bounds

on the area reachable by the animal during timeTj, also known

as the ‘potential path area’ byMiller (2005), Downs, Horner &

Tucker (2011), Long & Nelson (2012). It can be shown (see

derivation in Appendix S4) that this region is defined by an

ellipse with area Aj ¼ p rj
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j �D2

j

q
where Dj is the straight-

line distance between p~i and p~j. Our goal in deriving an ani-

mal’s UD is to knowwhere in the landscape the animal is likely

to have spent its time over the period it was being monitored.

Mathematically, a utilization distribution (UD) is a surface

that maps, for every point z~ in R (defining the extent of all

points that could possibly be occupied by the animal), the

probability density of finding the animal at a given z~. From our

delineation of the elliptical area possibly reached during a time

Tj, we can calculate a ‘time-density’ value as qj ¼ Tj

Aj
in units of

h km�2.

Although the true mean speed of the animal sj along the true

path length rj is unknown, it is bounded by a lower value of

smin ¼ jp~j�p~ij
Tj

(i.e. the animal had tomove at least as fast as smin

tomove along the shortest distance path – a straight line – path

from p~i to p~j). It is also bounded by some biologically realizable

upper limit smax based on the physiology of the animal being

studied. These constraints on speeds translate into constraints

in ellipse areas, and each possible average speed value from smin

to smax in moving from p~i to p~j corresponds to a unique bound-

ing elliptical area. Remembering that our goal is to determine

the amount of time an animal is likely to have spent at a given

point in the landscape, we can choose a particular point z~and

note that it can only be reached if the animal moves at an aver-

age speed greater than or equal to sz;j ¼ jrjj
Tj

¼ ðjz~�pi~jþjpj~�z~jÞ
Tj

where sz,j ≤ smax. If s z,j >smax, then point z~ is unreachable by

the animal in time Tj and the corresponding UD value will be

zero. If point z~ is reachable, then we can estimate the amount

of time spent at z~by integrating the time-density value over a

z

Dj

Pi

Pj
Time period = Tj

Z–Pi

Pj–Z

|rj| = |Z–Pi|+|Pj–Z|

Fig. 1. Path and ellipse geometry.
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differential area at z~. Time-density values at z~can vary accord-

ing to the area of the elliptical bounding region being consid-

ered. We proceed by computing the expected time-density

value function at a point z~: Θj(z) = E{qz,j} by calculating the

expectation of time-density values from each possible ellipse

equal to, or greater than, the ellipse required to move between

p~i via a point z~to reach p~j in timeTj:

Hjðz~Þ ¼
Z smax

sz;j

fðsÞqjðsÞds Eqn 1

where f(s) is the probability density function of average speed

over time Tj and where the volume integral of the elliptical

time-density function Θj(z) over all points z~across the overall

regionR being considered is equal to the timeTj:I
R

Hjðz~ÞdA ¼ Tj Eqn 2

In practice, the integral in eqn 2 is approximated by discret-

izing the landscape into a grid where each cell has an area DA
and the discrete set of evaluation points z~mf g are taken as the

grid cell centre points. The integral is then approximated by

the sum:

Xm
k¼ 1

Hjðz~mÞDA ¼ Tj Eqn 3

where k = 1. . .m indexes the set of discrete evaluation points

z~mf g reachable in time Tj. The discrete UD is a probability

mass function whereby the UD value of a given grid cell is

the probability of use by an animal within the grid cell, and

the probabilities across all grid cells are normalized to sum

to one.

It follows that the animal’s UD can be constructed by

adding the fractional amounts of time spent per landscape

area as determined using the elliptical time-density function

Θj from each successive point pair within the movement data

set:

UDðzÞ ¼
P

j Hjðz~Þ
TTotal

Eqn 4

where TTotal ¼
Pn�1

j¼ 1 Tj is the total time span of the move-

ment data set.

WEIBULL PROBABIL ITY DENSITY FUNCTION

Selection of the probability density function f(s) in eqn 1

should be based on choosing the mathematical form that best

fits the speed distribution of the data, and f(s) can either be a

parametric or nonparametric function. The most basic

assumption is that f(s) is uniform, in which case each time-den-

sity value qj(s) in eqn 1 is equally likely. However, from empiri-

cal observation we know that the probability distribution of

speeds is unlikely to be uniform and we generally expect that

faster speeds are less likely than slower ones. The two-parame-

ter Weibull distribution has a wide range of flexibility in repre-

senting variations in shapes and has previously been used to

model animal movement (Morales et al. 2004). Here, we incor-

porate a two-parameterWeibull distribution in eqn 1 to condi-

tion the time-density expectation function Θj, although a

Gamma distribution or other similarly versatile function is

equally useful for this approach. Equation 1 then becomes:

Hjðz~Þ ¼
Z smax

sz;j

4k

pks
s

k

� �k�1 e�
s
kð Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2t2j �D2
j

q ds Eqn 5

where k is the Weibull shape parameter and k is the Weibull

scale parameter. There is no known analytical solution to eqn

5, and the integration must be performed using numerical

methods.

The shape and scale parameters that define the functional

form of the Weibull distribution in eqn 5 are generally not

known but can be empirically estimated by fitting a Weibull

curve to the distribution of straight-line speeds from consecu-

tive pairs of positions p~i; p~j

n o
in the movement data set. The

likelihood function to bemaximized is then:

L ¼
Yn�1

j¼ 1

k

k
sj
k

� �k�1

e�
sj
kð Þk Eqn 6

and the best-fit parameters solved for using standard methods

(Clark 2007; Gelman&Hill 2007; Bolker 2008).

MULTITEMPORAL DATA

In empirically collected movement data sets, the time interval

between sampled locations, Tj, may vary considerably owing

to missed fixes or studies that purposely choose to vary the

temporal sampling regimes (Katajisto & Moilanen 2006). In

the case of data sets with irregular time intervals between loca-

tions, we would expect the Weibull distribution to vary its

shape and scale parameters as a function of the temporal sam-

pling regime Tj, making it necessary to explicitly model this

variation. We can therefore add an additional parametrization

to the Weibull model by writing the scale parameter as a func-

tion ofTj:

kðTjÞ ¼ aTb
j c

Tj Eqn 7

where a, b, c are three parameters to be estimated in addition

to the shape parameter k. The likelihood function can then be

written as:

L ¼
Yn�1

j¼ 1

k

aTb
j c

Tj

sj

aTb
j c

Tj

 !k�1

e
� sj

aTb
j
c
Tj

� �k

Eqn 8

MAXIMUM SPEED PARAMETER

The maximum speed value smax effectively limits the size of the

area reachable by an animal in moving between successive

recorded locations (Downs, Horner & Tucker 2011; Long &

Nelson 2012) and is therefore an important input parameter to

the ETD movement model. The maximum speed value can be

chosen in several ways: (i) based on a known biological speed

limit for a given species given its physiology; (ii) using the

maximum empirically measured speed in the tracking data set;

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 780–790
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or (iii) using a value that corresponds to a percentile of the

empirically best-fit two-parameter Weibull cumulative distri-

bution function (CDF)where

CDFWeibull ¼ 1� e�
s
kð Þk Eqn 9

A desired maximum speed value for a given percentile is

then determined using:

smax ¼ k ln j1� ajð Þð Þ1=k Eqn 10

where a is the percentile value (e.g. 50th percentile).
Using a percentile value of the Weibull distribution has the

benefit that the maximum speed value can vary according to

the temporal resolution at which the animal is being sampled,

as in the case of using the multitemporal parametrization.

Alternatively, using the top speed attainable by an animal

over short time periods will lead to an over estimation of the

area reachable when considering longer time intervals and

either the biological or empirically derived maximum speed

values would have to be specified in consideration of the tem-

poral sampling regime. If the smin value for a given positional

pair p~i; p~j

n o
is greater than or equal to the smax value (i.e.

smin ≥ smax), then the corresponding ellipse eccentricity

becomes infinite and the model collapses to a straight line

connecting the positional pair [also called the degenerate

ellipse (Long & Nelson 2012)].

Depending on the choice of the maximum speed value, and

as a result of discretization of the integral in eqn 3 into discrete

grid cells, there may be instances when no evaluation points

are reachable between a position pair even if smin is less than

smax. For example, in the case of a degenerate ellipse where the

point pair separation represents the maximum speed in the

data set, then no evaluation points will be reachable, unless

they fall exactly on the straight line connecting the positional

pair. In this situation, we employ the technique of Wall et al.

(2013) of first joining the point pair with a straight line and cal-

culating a constant time-density value along the line in units of

hour per meter, then clipping the line based on the geometry of

the underlying grid, such that any grid intersecting the line will

have a time-density value equal to Hjðz~Þ ¼ dz
Tj
where dz is the

fractional length of the straight line crossing the grid cell asso-

ciated with z~.

Elliptical Time-Densitymodel application

We applied the ETD model to a movement data set collected

from an African elephant (Loxodonta africana) in the Gourma

region of Mali (Wall et al. 2013) to highlight use of the ETD

model with real data. Additionally, to demonstrate model

behaviour as a function of varying temporal sampling regimes

typically encountered in applied scenarios, we calculated the

ETDmodel under three different temporal sampling scenarios:

(i) the full, high-resolution hourly sampled GPS data (data set

‘D1’), (ii) by randomly down-sampling D1 to produce a ran-

domly varying temporal resolution data set with 50% of the

original points (data set ‘D2’), and (iii) by regularly down-sam-

pling D1 to produce a low temporal resolution data with sam-

pled locations once every 24 h (data set ‘D3’). For each data

set, the ETDmodel was calculated using an output grid size of

500 m.

ETD MODEL SOFTWARE

To calculate the ETD model, we developed software imple-

mented as part of the ARCMET extension for Esri ARCMAP

GIS software (Esri 2013; Wall 2014) and written using the C#

programming language (available at: http://www.movemente-

cology.net). The algorithm begins by first creating a landscape-

wide grid of user-specified cell size that covers the entire extent

of the data set [although in order to prevent edge effects, an

additional expansion option allows the grid to cover an area

greater than the locations data set by a user-specified expan-

sion ratio (default = 1�1)].
Once the grid is created, the grid cell centre-point coordi-

nates are determined and these become the evaluation points

(i.e. the set of points fz~mg) for the time-density function evalua-

tion. Each pair of points in the location’s data set is then con-

sidered independently and in parallel, thus speeding the

calculation time considerably on machines with multiple logi-

cal cores. For each point pair, the straight-line speed (smin)

value between points is established. The speed required to

reach each landscape evaluation point (sz) is then calculated

and used as the lower bound for the integral in eqn 5. If an

evaluation point is unreachable without moving faster than

smax, then it is not considered further. The time-density func-

tion is evaluated for each of the points z~m reachable within time

Tj . The integral in eqn 5 is approximated using a trapezoidal

Riemann sum with a user-specified differential speed unit

(default = 0�001 km h�1). A user-defined cut-off parameter

allows a minimum output UD probability value to be set

(default value = 1E-15), below which the particular grid cell

will be assigned a value of zero and the rest of the grid cells will

have their values adjusted accordingly so that the total sum of

values equals one (eqn 4).

SPEED PARAMETER SELECTION

We modelled the speed distributions of data sets D1, D2, D3

using a two-parameter Weibull distribution using a Bayesian

framework. For data sets D1 and D3, we started with non-

informative uniform prior distributions for both shape and

scale parameters and used Markov Chain Monte Carlo

(MCMC) with Gibbs Sampling using WINBUGS software called

from within R (R Development Core Team 2013) using the

R2WINBUGS library (Gelman &Hill 2007), to determine the

best-fit parameters for the Weibull distribution (k and k from

eqn 5). We ran three MCMC chains each with 100 000 itera-

tions (first 50 000 discarded to allow for burn-in) and con-

firmed chain convergence using a potential scale reduction

factor value of 1�1 as a cut-off (Gelman & Hill 2007). A com-

plete listing of the procedure and parameter estimates can be

found in Appendixes S1 and S3. A similar procedure was fol-

lowed for data set D2 except that parametrization of the scale

factor using eqn 7 allowed for variation in the scale parameter

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 780–790
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as a function of the temporal separation between recorded

points (Appendix S2).

We explored how the choice of maximum speed value

affected the ETDmodel output by computing the ETDmodel

for data setD1 and a variety ofmaximum speed parameter val-

ues. We calculated the ETD model using: (i) the maximum

speed value in the data set (Model: D1-MaxSpeed), (ii) the

99% CDF value (Model: D1-99) and (iii) the 50% CDF value

(Model: D1-50). For each of these three models, we calculated

the core hot spots (defined as the 50% probability contour),

the home range [defined as the 95% probability contour (Jenn-

rich & Turner 1969; Anderson 1982)] and the total use area

based on the 99%probability contour area.

ETD MODEL ACCURACY ASSESSMENT

We tested the accuracy of the ETD model by comparing UD

percentile contours to true known UD percentile contours for

a given data set as described previously. To establish a true

UD, we used a 15-min temporal resolution data set collected

from an African elephant over a two-week period (n = 1522

positions). Using this ‘true’ path, we established a fine-resolu-

tion (10 m) graticule and calculated the amount of time spent

within each grid cell as a percentage of the total time.

We down-sampled the true, 15-min data set at hourly inter-

vals and calculated ETD models using 0%, 30%, 50%, 70%,

90%, 99%percentile maximum speed values (note that the 0%

model does not allow any off-path movement and effectively

connects data points with straight lines; i.e. infinitely eccentric

ellipses) using Weibull shape and scale parameters derived

from the distribution of hourly speeds: shape = 0�8638;
scale = 0�2906. For additional comparison, we also calculated

the BBMM model (animal mobility variance = 893�5 m2;

telemetry standard deviation = 28�85m2), a TGDE model

parametrized using the maximum data set speed

(2�55 km h�1) and a linear decay function, and a fixed bivari-

ate Gaussian kernel (KDE) model (smoothing factor

href = 875) using ARCMET software (Wall 2014). For each of the

ninemodelledUDs (ETD0, ETD30, ETD50, ETD70, ETD90,

ETD99, TGDE, BBMM and KDE) and the true UD (True-

UD), we calculated UD areas at 10%, 20%, 30%, 40%, 50%,

60%, 70%, 80%, 90%, 99%percentile levels.

We calculated errors of omission and commission to assess

the accuracy in capturing space use along the true movement

path of each model. An error of commission was defined to be

the number of pixels that fell within a model UD percentile

contour that were not within the corresponding TrueUD per-

centile contour (pixels marked as being used that should not

have been –Fig. 7a) expressed as a percentage of the total num-

ber of unused pixels in the TrueUD for a given percentile level.

An error of omission was defined as the number of pixels not

contained within a model UD percentile contour but that fell

within the corresponding TrueUD percentile contour (pixels

not marked as being used by a model contour but that should

have been – Fig. 7b) expressed as a percentage of the total

number of used pixels in the TrueUD for a given percentile

level. We defined a total error metric to be

Total Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
omission2 þ commission2

p
to summarize

both commission and omission errors (Fig. 7c).

Results

Conceptually, the morphology of the time-density function

kernel can be visualized in Fig. 2 where two hypothetical ETD

kernels have been generated for differing positional separa-

tions for a pair of points separated by 1 h of time using the

sameWeibull parametrization and a maximum speed parame-

ter value of 6 km h�1. On the left is a positional pair that are

close together with an smin value of 0�3 km h�1 compared with

the right side where the positional pair are located far apart

and have an smin value of 5 km h�1. The morphology shifts

from a peaked circular function, to an elongated elliptical form

0·3 km h–1

Speed (km h–1)

3·
0

W
ei

bu
ll 

pr
ob

ab
ili

ty
 d

en
si

ty
2·

0
0·

0

0 1 2 3 4 5 6

1·
0

5·0 km h–1

Fig. 2. An example of two different Elliptical

Time-Density function morphologies for a

pair of points acquired close together (left)

and spread apart (right) and their relative loca-

tions along the Weibull speed distribution

curve (bottom).Vertical lines indicate the loca-

tions of the pairs of sequentially acquired ani-

mal locations and shading illustrate the

relative probability of where the animal might

have been found in between the recorded loca-

tions.
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as the separation of the positional pair increases, and eventu-

ally collapses to a straight line as smin approaches smax.

Understanding the performance of a movement model

under differing temporal sampling strategies is an important

component in model testing and in the applicability of the

movementmodel within generalized animal tracking scenarios.

We contrasted the ETD model calculation under the three

selected temporal sampling regimes D1, D2 and D3 (Fig. 3d–

f). The maximum speed parameters derived from the Weibull

fit wereD1: 6�44 km h�1, D2: 5�82 km h�1, D3: 1�70 km h�1.

Areal values for core areas, home ranges and total use areas

across the three data sets demonstrate similar trends depending

on temporal sampling regime (Fig. 4). As temporal sampling

frequency decreases, the ETD model morphology erodes and

becomes more spatially diffuse and less peaked (Fig. 4). For

example, the area of the UD 50% percentile core area inflates

by a factor of 4�7 when moving from hourly to 24-h sampling,

the UD 95% percentile area inflates by a factor of 3�6, and the

99% percentile UD total use area inflates by a factor of 3�2
times when moving from an hourly sampling regime to 24-h

sampling for this data set.

The maximum speed parameter value influences the calcula-

tion of the ETDmodel (Fig. 5). Using a maximum speed value

equivalent to the empirically derived maximum speed value of

a given data set led to the UD with the largest 99% percentile

total use area and 95% percentile home range area (Fig. 6). In

contrast, 50% percentile core areas were generally equivalent

across all three ETD models. Using successively lower maxi-

mum speed values, that is, the 99% and 50% percentile

Weibull speed distribution values, had the effect of concentrat-

ing the three space-use levels into smaller, probabilistically

dense regions. We would expect this to be the case given that,

for a lower maximum speed parameter, a greater number of

point pairs are necessarily connected by straight lines, thus

limiting reachable areas.

There was a general exponential increase in commission

errors with increasing percentile levels. The KDE model com-

mitted the greatest number of commission errors, followed by

the TGDE, ETD99, BBMM, ETD90, ETD70, ETD50,

ETD30models and the ETD0model committed the least (Fig.

7a). This trend shows that as models progressed towards

greater restriction (e.g. ETD0 and ETD30) where fewer off-lin-

ear movements are allowed, they committed fewer commission

errors at all percentile levels. All models showed a peak in com-

mission errors at high percentile levels.

Omission errors showed very different trends. Above the

20% percentile UD contour, the ETD0 model committed the

greatest number of omission errors as would be expected
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because of the restrictiveness to straight-line paths between

points. KDE and TGDE caused the highest number of omis-

sion errors at the 10%and 20%percentile levels, but these con-

verged to zero by the 99% percentile level (Fig. 7b). The

ETD99 model, BBMM and ETD90 demonstrated the best

performance in terms of low omission error rates across all per-

centile levels. Overall, the ETD99 model had the lowest root

mean square error (Total Error) when considering both errors

of omission and commission across all percentile levels

although the ETD90 model had the least total error at the

90% and 99% percentiles (Fig. 7c). The ETD99 and BBMM

showed similarly low total error values between the 30% and

80%percentiles.

Discussion

The ETD movement model provides a powerful framework

for estimating animal space use based on discrete time tracking

data. Elliptical-based modelling of movement, rooted in the

theory of time-geography, is a unique approach to estimate

animal space use, yet development in this direction has been

relatively recent (Downs 2010; Downs,Horner & Tucker 2011;

Long & Nelson 2012). The ETD model builds on this founda-

tion and, by doing so, offers several distinct properties relative

to other methods of animal UD estimation, including biologi-

cally based parametrization that avoids assumptions regarding

the underlying movement process. The lack of biological real-

ism or interpretability in model parametrization has been

raised as a weakness in previous space-use and movement

modelling approaches.

TRAJECTORY-BASED MODEL

An important characteristic of the ETD model is that it is

developed based on consideration of the trajectory of an ani-

mal and explicitly incorporates the temporality of recorded

positions by considering pairs of observed locations in their

temporal sequence in the parametrization of the geo-ellipses

used to estimate space use. Use of the multitemporal parame-

trization of the Weibull scale function in eqn 7 lets the ETD

model adapt to changing temporal lengths between positional

pairs and makes the model flexible in order to handle any tem-

poral sampling regime with biological realism. Explicit treat-

ment of the serial structure within trajectory-based models

obviates consideration of independence issues that typically
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lated from ETD models based on the data sets D1, D2 and D3. The
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Fig. 5. Elliptical Time-Density (ETD) UDs

calculated from data set D1: (a) ETD calcu-

lated using themaximum speed (6�43 km h�1)

(b) ETD calculated using the 99% empirical

Weibull speed value (3�01 km h�1) (c) ETD

calculated using 50% empirical Weibull speed

value (0�29 km h�1)
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arise with other non-trajectory-based spatial-use estimators

(Swihart & Slade 1985,1997; Horne et al. 2007). The recent

development of trajectory-based space-use models including

the BBMM (Horne et al. 2007), the dBBMM (Kranstauber

et al. 2012), the TGDE model (Downs, Horner & Tucker

2011) and the PPA model (Long & Nelson 2012) has been a

departure from methods such as KDE (Worton 1989) that

focus on the point pattern of recorded locations but do not

explicitly model temporality or movement between points.

Trajectory-based models are critical when interested in the

connectivity or directionality of movements within a landscape

(Horne et al. 2007).

The ETD model introduced here has several strengths rela-

tive to other, recently developed trajectory-based methods.

Our method requires no assumptions about the form of move-

ment used by the animal in contrast to both the BBMM and

dBBMM models which assume Brownian motion despite its

known shortcomings for modelling the movements of most

species (Horne et al. 2007). Rather, the ETD model simply

establishes constraints on movement based on the empirically

observed data or, alternatively, a user’s knowledge of the biol-

ogy of the species. Our comparison of omission–commission

error demonstrates the strength of our approach in that the

ETD99model provided the best estimate of space used (lowest

error rate) relative to BBMM, TGDE or KDE (Fig. 7). This

analysis also provides a useful framework for determining the

strengths andweaknesses of different UDmodel structures.

In contrast to the ellipse-based approach of Long & Nelson

(2012), our approach is a probabilistic model leading to a UD,

whereas the PPAmodel establishes overall bounds of where an

animal might have travelled between locations. This outer

bounding output makes the PPA more similar to a minimum

convex polygon (MCP) approach which delineates the outer

bounds of movement when considering independent fixes

(White &Garrott 1990). As a result of this fundamental differ-

ence, we do not directly compare ourmethod to this approach.

Finally, Downs, Horner & Tucker (2011)used two probabil-

ity density functions – uniform and linearly decreasing – to cal-

culate probability density values at landscape points within the

maximum ellipse area. Our approach is fundamentally differ-

ent in that by calculating the expected time-density value (of all

elliptical areas corresponding to speeds equal to, or greater

than, theminimum speed necessary to reach a landscape point)

using the probability distribution of speed (eqn 1), we address

the question of how long an animal is likely to have spent at a

given point in the landscape.

PARAMETRIZATION

Space-use models have generally been classified as being either

parametric or nonparametric (White & Garrott 1990; Kerno-

han, Gitzen & Millspaugh 2001). We consider the ETD to be

nonparametric given that the model is developed solely on

empirical data and does not assume a distributional form as

with some models (e.g. the bivariate-normal class of models

Kernohan, Gitzen & Millspaugh 2001). Although we selected

the probability density function f(s) in eqn 1 to be the two-

parameter Weibull distribution because of its close fit to the

empirically observed speed distribution, the ETD is not limited

to this distribution, and parameters can be drawn from other

distributional forms (e.g. Gamma) or by using the empirical

distribution itself. The maximum speed parameter is the pri-

mary user-defined parameter affecting model output. But

unlike many models, this parameter can be selected based on

biologically relevant emergent properties of the underlying

data. Within the BBMM model for example, Long & Nelson

(2012) have noted that the animalmobility variance parameter,

which controls the spatial extent of each Brownian bridge den-

sity function connecting positional pairs, and is a critical model

parameter for BBMM, is difficult to interpret. Similarly, the

smoothing parameter used in the popular KDE model

(Worton 1989) is also difficult to link to the underlying biology

of the species, and its initial selection can even be subjective

(Katajisto & Moilanen 2006; Horne et al. 2007; Kie et al.

2010). Even should a user choose to parametrize ETD subjec-

tively, the parametrization and model output can be inter-

preted biologically, a strength lacking from other approaches.

The ability to vary the maximum speed parameter, either as

a percentage of the fitted Weibull distribution, or biologically,

based on prior knowledge of an animal’s movement character-

istics, is important in constraining the extent of the ETDmodel

output. Use of higher maximum speed parameter values is

least prone to errors of omission but leads to the largest area of

use in any given scenario (Fig. 7). However, it is biologically

unrealistic for most terrestrial animals to frequently move at

their top speeds (although this may in fact be true for certain
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parametrized in three ways: using a maximum speed value of 50% and

99% of the empirical Weibull speed distribution and by using a con-

stant speed equivalent to the maximum empirically derived speed

(6�44 km h�1) found in the tracking data set.
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aquatic or avian species). As such, using a high maximum

speed value (e.g. the 99% value) may inherently overestimate

the areas used by the animal leading to errors of commission

(Fig. 7). Selection of maximum speed parameter may also be

driven by the goals of the intended output of the space-use

model and be guided by the particular questions the analyst is

asking. The model user must also decide what the conse-

quences are for a givenmodelling scenario in committing omis-

sion errors by selecting a low maximum speed value vs.

commission errors when selecting a high value. Interestingly,

for the elephants sampled here, the 99% percentile maximum

speed value model (ETD99) provides the least overall error

when considering all UD percentile contour areas and was

nearly matched by the BBMM model between the 30% and

80% per cent contour areas. For resource selection in a use-

availability framework, the ETD output for the biologically

maximum speed provides a realization of availability that pro-

duces a sound estimate of availability (based on our omission

analysis), given the sampling of the elephant’s movement path,

in line with that provided using conditional logistic regression

(Boyce 2006).

Choice of a maximum speed value of anything less than the

empirically derived maximum speed will result in the genera-

tion of straight-line segments between positional pairs, rather

than elliptical regions (i.e. infinitely eccentric ellipses with zero

area). The ETDmodel handles this situation by calculating the

time-density value along the straight-line segment, and there-

fore, every positional pair contributes towards the overall UD.

Skipping the positional pair if the maximum speed parameter

is below the speed necessary to move between positions, as

conducted byDowns, Horner & Tucker (2011), biases theUD.

The connectivity property of the ETDmodel ensures that con-

nectivity of the sequentially recorded data set is preserved in

the output UD, a particularly important quality when assess-

ing animalmovement corridors (Horne et al. 2007).

The effects of the maximum speed parameter are also linked

to the user-selected outputUD grid cell size. If the selected grid

cell size is too coarse, then many landscape evaluation points

(grid cell centre points) will become unreachable, especially as

the minimum straight-line speed value smin approaches the

maximum speed parameter value. A finer grid cell size will

therefore result in a more precise output UD. A consequence
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Fig. 7. Accuracy assessment of the ETD,

BBMM and KDE models using 1-h loca-

tions sampled from a 15-min elephant GPS

tracking data set (n = 1522 positions) over a

two-week period. Models were evaluated

using a 10-m grid resolution and compared

with the true UD calculated from the 15-min

data. (a) Errors of commission are defined to

be the number of pixels that fell within a

model UD percentile contour that were not

within the corresponding TrueUD percentile

contour expressed as a percentage of the

total number of unused pixels in the TrueUD

for a given percentile level. (b) Errors of

omission are defined as the number of pixels

not contained within a model UD percentile

contour but that fell within the correspond-

ing TrueUD percentile contour expressed as

a percentage of the total number of used pix-

els in the TrueUD for a given percentile level.

(c) The total error taking into account both

omission and commission errors is defined as

Total Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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of choosing a finer output grid is increased computation time

and system resource requirements; thus, this decisionwill likely

be a balance among these trade-offs.

Determining the best-fit parameters for the two-parameter

Weibull distribution from empirical data is based on using

straight-line segments to connect positional pairs in the track-

ing data set. An argument against this approach might follow

the lines that since the animal rarely moves in straight lines

between points, especially as the temporal separation between

observed locations increases, the Weibull parametrization is

not representative of the true movement speed distribution of

the animal and is likely to be an underestimate of the speeds

capable by the animal. However, we are modelling probable

space use between points, and therefore, deriving the top speed

from the animal’s movements at the sampling interval is a bio-

logically sensible solution. Further refinement of the method

could attempt to incorporate biologically relevant structure in

the parametrization of the Weibull model. For instance, circa-

dian, movement state-specific, landscape-related or seasonal

patterns in movement could be modelled directly and used to

parametrize ETD for relevant time periods. Such refinement

would likely offermore accurate parametrization ofmovement

properties without increasing computational requirements,

should such structure be incorporated post hoc. In addition,

the error structure of the location estimates (GPS points or

otherwise) can be modelled to incorporate additional uncer-

tainty to the output UD, though the utility of incorporation of

location error relates to the data (high vs. low accuracy),

underlying grid parametrization (coarse vs. fine), and move-

ment characteristics of the animal.

Conclusion

The ETD model is a probabilistic, trajectory-based model for

estimating the UD of an animal from discrete time positional

data and can be used with both regularly and irregularly sam-

pled data sets of varying temporal frequency. The ETDmove-

ment model builds on the concept of elliptical constraining

regions and time-geography by introducing a new time-density

function that determines the most likely time-density value

(time spent per unit landscape) at a particular landscape point

and is an important conceptual departure from other methods.

The model is nonparametric and makes no assumption about

the mechanistic movement behaviour of the observed animal,

providing an unbiased estimate of the animal’s temporal space

use. Time information is implicitly encoded in the model for-

mulation, freeing the output UD estimate from statistical

issues of autocorrelation. The ETD model development pre-

sented in this paper and Supplementary Information, along

with freely available software for calculating the ETD model,

provides a framework for incorporation of the ETD model

within generalized animal tracking studies.
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